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Abstract—Using a single imaging modality to diagnose
Alzheimer’s disease (AD) or mild cognitive impairment (MCI)
is a challenging task. FluoroDeoxyGlucose Positron Emis-
sion Tomography (FDG-PET) is an important and effective
modality used for that purpose. In this paper, we develop
a novel method by using single modality (FDG-PET) but
multilevel feature, which considers both region properties
and connectivities between regions to classify AD or MCI
from normal control. First, three levels of features are ex-
tracted: statistical, connectivity, and graph-based features.
Then, the connectivity features are decomposed into three
different sets of features according to a proposed similarity-
driven ranking method, which can not only reduce the fea-
ture dimension but also increase the classifier’s diversity.
Last, after feeding the three levels of features to different
classifiers, a new classifier selection strategy, maximum
Mean squared Error (mMsE), is developed to select a pair of
classifiers with high diversity. In order to do the majority vot-
ing, a decision-making scheme, a nested cross validation
technique is applied to choose another classifier accord-
ing to the accuracy. Experiments on Alzheimer’s Disease
Neuroimaging Initiative database show that the proposed
method outperforms most FDG-PET-based classification al-
gorithms, especially for classifying progressive MCI (pMCI)
from stable MCI (sMCI).

Index Terms—Alzheimer’s disease (AD), ensemble
classification, FDG-PET, multilevel feature representation.
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I. INTRODUCTION

A LZHEIMER’s Disease (AD) is a dominant neurodegen-
erative brain disease and the main cause of dementia in

elderly people worldwide. It is expected that 115 million people
will be affected by this disease in 2050 [1]. The National Insti-
tute on Aging and Alzheimer’s Association (NIA-AA) criteria
distinguish 3 clinical stages: asymptomatic preclinical phase
(pre-clinical stage of AD), amnestic Mild Cognitive Impair-
ment (MCI) phase due to AD, and AD dementia phase [2]–[4].
These criteria introduce the utility of different biomarkers of the
pathophysiological process to weight the diagnostic probabil-
ity of the disease [2], [5]. One of them is FDG-PET, which is
effective in diagnosing AD [6]. It can reveal pathophysiologi-
cal changes before irreversible anatomical changes and provide
useful information about the cerebral glucose metabolic rate [7].

Machine learning techniques offer an automatic and objective
classification framework for high-dimensional data processing
and can learn complex patterns of changes across various imag-
ing modalities [8]. Computer-Aided Diagnosis (CAD) based on
machine learning approaches is a useful method for doctors,
and can bring a quantitative evaluation to better detect brain
diseases. Therefore, developing a method that can be used to
distinguish AD and MCI from Normal Control (NC) automati-
cally is important yet challenging.

In recent papers [8], [9], multi-modality-based algorithms,
specifically combining MRI and FDG-PET, are the most com-
monly used methods, since different modalities can provide
complementary information [10], [11]. Shi et al. [12] devised
a coupled feature representation based on MRI and FDG-PET
to diagnose AD and MCI. Liu et al. [13] developed a method
under deep learning architecture which used a zero-masking
strategy for data fusion to extract complementary information
from MRI and FDG-PET. There has been a growing interest
in using FDG-PET as a single modality to diagnose AD and
MCI as well. These FDG-PET-based methods can be classified
into 2 main categories according to the type of used features: 1)
voxel-based methods, which used voxels as features [14], [15];
2) atlas-based methods, which segmented a subject into differ-
ent regions and the region information was then used as features
[16]–[18]. But they take only region properties into consider-
ation without connectivities between regions. In fact, a human
brain is a complex system and multiple regions interact with
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each other [19], [20]. Therefore, connectivities between regions
are important in AD and MCI diagnosis and cannot be ignored.

In this study, we investigate the multi-level feature repre-
sentation for FDG-PET data to diagnose AD and MCI. The
major contributions can be summarized as three folds: 1) the
multi-level feature representation considers not only region
properties (1st-Level), but also the connectivity between any
pair of regions (2nd-Level) and an overall connectivity between
one region and the other regions (3rd-Level); 2) a similarity-
driven ranking method is proposed to rank regions from highly
affected to slightly affected by the disease, which can decom-
pose the 2nd-level feature, thereby reducing the feature dimen-
sion and increasing the classifier’s diversity to a certain degree;
3) a classifier selection strategy, maximum Mean squared Error
(mMsE), is proposed to choose a pair of classifiers with high
diversity to enhance the ensemble effect, especially for the case
that sub-classifiers do not perform well.

The remaining of the paper is organized as follows. Section II
describes the novel multi-level representation method for di-
agnosing AD and MCI. Section III reports and analyzes the
experimental results. Finally, a conclusion of this work is given
in Section IV.

II. METHODS

The proposed multi-level feature representation method is
described from 3 aspects in details, including feature extraction,
feature selection and ensemble classification, as shown in Fig. 1.
First, after segmenting each subject into 116 Regions of Interest
(ROIs) according to an Automated Anatomical Labeling (AAL)
atlas [21], 3 levels of features are extracted, specifically, the
1st-Level feature, which comprises ROI’s mean intensity and
standard deviation. The 2nd-Level feature, the similarity-based
connectivity between any pair of ROIs, is decomposed into 3 sets
according to a proposed similarity-driven ranking method. The
3rd-Level feature is composed of graph-based features. Next,
Least Absolute Shrinkage and Selection Operator (LASSO) [22]
is applied to do the feature selection for each set of features,
respectively. Then different classifiers are trained using different
sets of features. Final prediction is obtained through an ensemble
classifier decided by a proposed maximum Mean squared Error
(mMsE) strategy and a nested cross validation technique.

A. Dataset

Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). The ADNI was launched in 2003
as a public-private partnership, led by Principal Investigator
Michael W. Weiner, MD. The primary goal of ADNI has been
to test whether serial MRI, PET, other biological markers, and
clinical and neuropsychological assessment can be combined to
measure the progression of MCI and early AD.

ADNI provides different imaging modalities, such as struc-
tural MRI, functional MRI, Diffusion Tensor Imaging (DTI) and
PET, for researchers to develop methods for early detection of
AD. In this study, we focus on using FDG-PET data to diagnose
AD and MCI. After having acquired original data, there are usu-

ally 3 steps in data processing: spatial normalization, smoothing
and intensity normalization. In the existing literatures, most re-
searchers do these procedures independently. In fact, besides
those original data, ADNI also provides processed data. There
are 2 kinds of FDG-PET data images, pre-processed data and
post-processed data. Specifically, for the pre-processed data,
there are 4 different groups [23], including 1) Co-registered
Dynamic; 2) Co-registered, Averaged; 3) Co-reg, Avg, Stan-
dardized Image and Voxel Size; 4) Co-reg, Avg, Std Img and
Vox Siz, Uniform Resolution. The post-processed data was pro-
cessed on the basis of group 4) data mentioned above and then
spatially normalized to MNI template using SPM [24] with
2 × 2 × 2 mm voxel size and 79 × 95 × 69 matrix dimension.
The intensity normalization is done by using the global mean
value. It should be noted that the reason why we use the post-
processed data is to avoid the impact of pre-treatments as far as
possible and pay more attention to the influence of features and
classification methods on results. Therefore, 272 post-processed
baseline FDG-PET data were obtained from ADNI, including
94 subjects with AD, 88 subjects with MCI and 90 subjects un-
der NC. MCI subjects were clinically further subdivided into 44
progressive MCI (pMCI), who progressed to AD in 24 months,
and 44 stable MCI (sMCI), who did not progress to AD. De-
mographic and clinical information of subjects are provided in
Table I.

B. Feature Extraction

Before extracting features, each subject is segmented into 116
ROIs using AAL atlas. Many methods in the existing literatures
used mean gray level intensities of some ROIs as features [16],
[18], [25]. However, only ROI’s information is not enough.
Therefore, in this paper, we explore to expand the feature pool
computed on FDG-PET data.

1) First-Level Feature: Since each ROI’s mean intensity and
standard deviation can reflect the FDG uptake and its corre-
sponding distribution, the 1st-Level feature for the n-th sample
can be represented as:

rm
n = [rm

n1 , r
m
n2 , . . . , r

m
np ] (1)

rs
n = [rs

n1 , r
s
n2 , . . . , r

s
np ] (2)

where rm
n and rs

n are the mean intensity and standard deviation,
respectively, and p is the number of ROIs, here p = 116.

2) Second-Level Feature: The 2nd-Level feature is the
similarity-based connectivity between ROIs. Hereafter, connec-
tivity is used to refer to similarity-based connectivity. First, the
1st-Level feature is used to represent each ROI, and the i-th ROI
is represented by:

xi = [rm
i , rs

i ] (3)

then the connectivity between any two ROIs is computed
through:

wij =

{
e−‖x i −xj ‖2

i �= j,

0 i = j.
(4)
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Fig. 1. Framework of the proposed method.

TABLE I
DEMOGRAPHIC AND CLINICAL INFORMATION OF THE SUBJECTS

∗Including 44 pMCI and 44 sMCI that are described in the last two columns.

where wij is the connectivity of the i-th ROI and the j-th ROI,
and the higher the value of wij , the more similar the two ROIs.
It should be noted that before computing wij through (4), each
type of the 1st-Level feature is normalized over ROIs. The
2nd-Level feature of any subject is:

Wr =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 wr12 · · · wr1j · · · wr1p

wr21 0 · · · wr2j · · · wr2p

...
...

. . .
...

...

wri1 wri2 · · · 0 · · · wrip

...
...

...
. . .

...

wrp1 wrp2 · · · wrpj · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

where Wr is a symmetric matrix.
The 2nd-Level feature is composed of connectivities between

all the 116 ROIs, totally 6670 dimensions (116 × (116 − 1)/2,
only considering the values on the upper triangle). Clearly,
it is not an optimal dimension for the subsequent classifi-
cation. Therefore, Wr is further decomposed into 3 subsets
of features according to a proposed similarity-driven ranking
method.

Similar to the way of computing connectivities between ROIs,
we can obtain the similarity coefficients between subjects for a
specific ROI:

wuv =

{
e−‖xu −xv ‖2

u �= v,

0 u = v.
(6)

where u, v stands for the u-th and v-th subjects.

For any ROI, a symmetric matrix for subjects, Ws , is obtained
from:

Ws =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ws12 · · · ws1v · · · ws1N

ws21 0 · · · ws2v · · · ws2N

...
...

. . .
...

...

wsu1 wsu2 · · · 0 · · · wsuN

...
...

...
. . .

...

wsN 1 wsN 2 · · · wsN v · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

The dimension of Ws is determined by the number of subjects,
N , in a group (AD, NC, MCI, pMCI and sMCI). For exam-
ple, there are 94 subjects in AD group, so N = 94, then the
dimension of Ws is 94 × 94. Each subject is segmented into
116 ROIs, thus there are 116 matrices like Ws .

If taking NC subjects (including training and testing samples)
as a reference, in one hand, for a ROI which is not affected by
AD, the similarity coefficients between AD subjects are sup-
posed to be close to those of NC subjects. In the other hand,
for a ROI affected by AD, the similarity coefficients of AD
subjects are different from NC group. In order to quantify the
difference, we first make a statistic on the upper triangle val-
ues of Ws to get the frequency distribution histogram of those
values. Then the cumulative probability curve of similarity co-
efficients can be obtained, as shown in Fig. 2, where (a), (b)
and (c) stand for region Angular_L, region Hippocampus_L
and region Cerebelum_10_R, respectively. It can be seen that
there is a clear difference between the AD and NC groups in
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Fig. 2. Statistics of the similarity coefficients between subjects for a
certain ROI. (a) ROI: Angular_L. (b) ROI: Hippocampus_L. (c) ROI:
Cerebelum_10_R.

Fig. 3. Instance of the division for a similarity matrix.

Fig. 2(a), and for the other two ROIs, the difference decreases
gradually. It implies that among the experimental subjects, re-
gion Cerebelum_10_R is almost unaffected by AD, while region
Angular_L has a great chance of getting influenced, therefore
region Angular_L is ranked before region Cerebelum_10_R,
and region Hippocampus_L is placed between them. The dif-
ference between curves is computed through the difference of
area under curve, which is denoted ΔS. The larger the ΔS, the
greater the impact generated by AD for a ROI. At last, all the
ROIs can be ranked according to ΔS from high to low. It should
be noted that we highly recommend using a balance number of
subjects in 2 groups for the comparison and the more the better.

After ranking all the ROIs, the similarity matrix Wr is re-
calculated according to the new order of ROIs. Then Wr is
divided into 4 equal parts, as shown in Fig. 3(a), where the red
part stands for the sets which are highly influenced by AD, de-
noted Wh , while the blue part stands for ROIs with less impact
of AD, denoted Wl , and the green part represents the connec-
tivities between highly influenced ROIs and slightly influenced
ROIs, which is denoted Wm . Since Wr is symmetric, only up-
per triangular matrix is taken into consideration, like in Fig. 3(b).
Therefore, the 2nd-Level feature Wr is divided into 3 sets, and
after converting them to vectors, the 2nd-Level feature for the
n-th sample is represented as:

wh
n = [wh

n1 , w
h
n2 , . . . , w

h
nph ] (8)

wm
n = [wm

n1 , w
m
n2 , . . . , w

h
npm ] (9)

wl
n = [wl

n1 , w
l
n2 , . . . , w

l
npl ] (10)

where ph , pm and pl are the dimension of each subset of features.
ph and pl are the same (red and blue parts in Fig. 3(b)), both
equal to 1653 (58 × (58 − 1)/2), and pm (green part) is 3364
(58 × 58). Apparently, compared to 6670 (red, blue and green
parts), the dimension is decreased by about 50%–75%.

3) Third-Level Feature: The 3rd-Level feature is extracted
from a graph point of view, which stands for an overall con-
nectivity between a ROI and the other ROIs. Generally, a graph
G = (V,E) consists of a finite set V of vertices and a finite set

Fig. 4. Instance of the brain connectivity network from the axial
view [26].

of edges E ⊆ V × V . A vertex in a graph is equivalent to a ROI
in a brain. Therefore, the connectivity between the i-th ROI and
the j-th ROI, wij , can be viewed as the weight of an edge which
connects the i-th vertex and the j-th vertex. In this paper, we
analyze the undirected graph, which means wij = wji . Then a
subject can be represented by a graph, as shown in Fig. 4 which
represents a subject from ADNI database.

After constructing a graph for a subject, several graph mea-
sures can be computed, such as degree, strength, clustering coef-
ficient, betweenness centrality [27]. According to [19], [28], the
metrics strength and clustering coefficient are effective in dis-
criminating AD, therefore the 3rd-Level feature is represented
by these two graph measures. Specifically,

strength: the sum of a vertex’s neighboring link weights [27].

si =
p∑

j=1

wij (11)

where si is the strength of a vertex or a ROI.
clustering coefficient: the geometric mean of all triangles

associated with each vertex [27].

c =
diag((Wr · 1

3 )3)
d(d − 1)

(12)

where diag(·) is a operator which takes the diagonal values from
a matrix, c is a clustering coefficient vector, and d is a degree
vector in which the element di is,

di =
p∑

j=1

aij (13)

where aij is the connection status between the i-th vertex and
the j-th vertex: aij = 0 when wij = 0, otherwise aij = 1.

Thus, the 3rd-Level feature consists of 2 sets of features, and
each of them for the n-th sample is represented as:

gs
n = [sn1 , sn2 , . . . , snp ] (14)

gc
n = cn (15)

These features exhibit different ranges of values. Thus a pro-
cedure of feature normalization is necessary by z-score prior to
classification:

znm =
fnm − μm

δm
(16)

where fnm is the value of the m-th feature of the n-th sample,
and f ∈ {rm , rs , wh , wm ,wl, gs , gc}, μm and δm are the mean
value and standard deviation of the m-th feature, respectively.
Most of fnm values can be transformed to the range [−1, 1]
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through (16), while out-of-range values are clamped to either
−1 or 1.

C. Feature Selection

In this paper, there are 3 levels of features. For the 1st-Level
and 3rd-Level features, the dimension is 116 for each type of
feature. For the 3 subsets of features in 2nd-Level, the dimension
is 1653 (wh ), 3364 (wm ), 1653 (wl), respectively. Therefore,
it is necessary to select representative features to reduce the
feature dimension. A good strategy of feature reduction or se-
lection is to remove irrelevant, redundant and noisy features and
meanwhile improve classification performances. Least Abso-
lute Shrinkage and Selection Operator (LASSO) is one of the
popular techniques for dimension reduction and feature selec-
tion. It uses l1 regularization to get a sparsity solution, thereby
achieving the goal of feature selection. In this paper, feature
selection is accomplished by using LASSO.

D. Ensemble Classification

The support vector machine (SVM) classifier is a popular
and effective method in distinguishing subjects with AD or
MCI from NC. In this study, 3 levels of features, which then
are decomposed into 7 types of features, are fed into 7 linear
SVMs to train 7 individual models, respectively. The motivation
of training in this way is to ensure a model focus on one type of
feature of the data. The margin parameter C of all the SVMs is
fixed to 1 for a fair comparison, like [29], [30].

The effectiveness of an ensemble classifier depends on the
number of individual classifiers and the diversity between them.
The more the number of classifiers and the higher the diversity,
the more effective the ensemble classifier is. However, if the sub-
classifier doesn’t perform well (the accuracy is usually between
50% and 60%), the increase of the number of classifiers cannot
improve the ensemble classifier’s performance, because as the
number of classifiers increases, the possibility that misclassi-
fied results accounted for the majority also increases. Thus, in
order to enhance the ensemble effect and meanwhile, avoid mis-
classified results taken up the majority, a strategy of selecting
models, maximum Mean square Error (mMsE), is proposed. Let
yi and yj denote the output labels of SVMi and SVMj , respec-
tively, then the Mean Square Error (MSE) between yi and yj is
computed through,

M(i, j) =
1
K

‖yi − yj‖2 (17)

where K is the number of the testing samples and each element
in yi belongs to {−1, 1}. The higher the MSE, the greater
the diversity between the outputs of classifiers. Then a pair of
classifiers with high diversity can be achieved by finding the
maximum MSE,

(i, j) = arg max
i,j

M(i, j) (18)

In addition, another classifier, yk , is determined through nested
cross validation on the training set and the one with the highest
accuracy is selected. Last, the final decision is made through a

Algorithm 1: Workflow of the Proposed Method.
1: Dividing the dataset into 10 parts, one of them is used

as testing data and the remaining parts are for training;
2: Extracting 7 types of features for the training and

testing data, respectively;
3: Selecting features by LASSO for each type of features;
4: Training different models using different types of

features on training data;
5: Using the proposed mMsE method and the nested cross

validation technique to choose 3 models;
6: Applying the 3 models on testing data and then the

evaluation metrics (ACC, SEN, SPE, AUC) can be
computed;

7: Returning to step 1, choosing another part as the testing
data till all the 10 parts are used for testing;

8: Repeating step 1 to step 7 ten times, then computing the
average value of each metric.

majority voting of the 3 selected classifiers’ outputs:

Y = sgn(yi + yj + yk ) (19)

where sgn(·) is a sign function. Even though the number of
classifiers for decision making decreases, the classifiers with
high diversity and high accuracy are kept. Therefore, the strategy
can enhance the ensemble effect, especially in the case where
all the classifiers do not have a good performance, since it can
avoid misclassified results accounted for the majority.

III. EXPERIMENTS AND RESULTS

A. Experimental Setup

Experiments are conducted on 3 different kinds of classifi-
cations, including 1) AD vs. NC, 2) MCI vs. NC and 3) pMCI
vs. sMCI. In order to evaluate the performance of the proposed
method, 4 different metrics, classification accuracy (ACC), sen-
sitivity (SEN), specificity (SPE), and area under curve (AUC)
are used. The higher the values are, the better the corresponding
method is. Specifically, ACC is the proportion of samples that
are properly predicted. SEN implies the proportion of correctly
classified AD or MCI samples. SPE means the proportion of
NC samples that are correctly classified. Because of a limited
number of samples, we use a 10-fold cross validation tech-
nique to assess the performance, and repeat 10 times to reduce
the possible bias. The parameter in LASSO, λ, is decided by
nested cross validation on the training dataset within the range
{10−5 , 10−4 , . . . , 10−1} for the 1st-Level and 3rd-Level fea-
tures, and {10−9 , 10−8 , . . . , 10−1} for the 2nd-Level feature.
The parameter is chosen separately, which can help reduce the
computation cost in a great extent. It should be noted that all
the results shown in following parts are obtained after LASSO.
The whole procedure is shown in Algorithm 1.

B. Single-Type Feature Representation Evaluation

The 3 levels of features are decomposed to 7 different types of
features, and the performance of each type of feature is shown
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TABLE II
PERFORMANCE OF DIFFERENT TYPE OF FEATURE FOR AD VS. NC(%)

TABLE III
PERFORMANCE OF DIFFERENT TYPE OF FEATURE FOR MCI VS. NC(%)

TABLE IV
PERFORMANCE OF DIFFERENT TYPE OF FEATURE FOR PMCI VS. SMCI(%)

TABLE V
PERFORMANCE OF DIFFERENT LEVEL OF FEATURE FOR AD VS. NC(%)

in Table II, Table III and Table IV for AD vs. NC, MCI vs.
NC and pMCI vs. sMCI, respectively. It can be seen that the
1st-Level feature (either the mean intensity or the standard de-
viation) outperforms the other 2 levels of features for all the
3 kinds of classifications. Even though it doesn’t give the best
result in classifying AD from NC, the difference from the best
one (wm ) is small in terms of ACC and AUC, about 1.39% and
0.04%, respectively. Furthermore, the SPE of the feature stan-
dard deviation (belongs to 1st-Level feature) is the highest. The
graph metric, strength, which belongs to the 3rd-Level feature
is inferior among all the types of features in AD diagnosis and
MCI diagnosis.

C. Feature Concatenation Evaluation

In this part, the evaluation for different levels of features are
given. Different types of features within the same level are con-
catenated to a long vector and the results are shown in Table V
to Table VII (the first 3 lines). As can be seen, among all the 3
levels of features, the 1st-Level feature is still superior to other
features in three tasks. In addition, it can be seen from Table II
and Table V (AD diagnosis) that concatenation of two types of

TABLE VI
PERFORMANCE OF DIFFERENT LEVEL OF FEATURE FOR MCI VS. NC(%)

TABLE VII
PERFORMANCE OF DIFFERENT LEVEL OF FEATURE FOR PMCI VS. SMCI(%)

Fig. 5. Performance evaluation of the similarity-driven ranking method.
(a) AD vs. NC. (b) MCI vs. NC. (c) pMCI vs. sMCI.

1st-Level features can improve the performance of AD classi-
fication, and increase by about 2.38% (ACC), 1.56% (SEN),
1.85% (SPE), 1.75% (AUC). Concatenation of 2nd-Level fea-
tures also has some improvements, but concatenation of 3rd-
Level features has an inverse effect and all the four metrics are
lower than the results obtained using the optimal sub-feature
(clustering coefficient) in 3rd-Level. In MCI diagnosis, only
concatenation of 2nd-Level features improves the classification
effectiveness. But in classifying pMCI from sMCI, concate-
nation of sub-features within the same level cannot improve
the performance. In addition, the performances of concatenat-
ing all the 3 levels of features are also shown in Table V to
Table VII (the last line). It can be seen that there is a significant
improvement only for AD diagnosis, and for MCI diagnosis, the
improvement is small. For pMCI vs. sMCI, concatenation of 3
levels of features fails to improve the performance. It is because
that those added features may be effective, or may be redun-
dant. Therefore, the strategy of concatenating features is not an
effective method to improve the classification performance for
the all 3 tasks.

D. Effectiveness of the Similarity-Driven Ranking Method

The similarity-driven ranking method can not only reduce the
2nd-Level feature’s dimension, but also improve the classifier’s
diversity. Here, Kappa index [29] is applied to measure the
diversity and a small value indicates a high diversity, which is
computed through:

Ka(i, j) =
p1 − p2

1 − p2
(20)

where p1 denotes the observed agreement of yi and yj , and p2
stands for the chance agreement. Fig. 5 shows the effectiveness
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Fig. 6. Performance evaluation of the ensemble classification. (a) AD
vs. NC. (b) MCI vs. NC. (c) pMCI vs. sMCI.

the proposed ranking method on the improvement of classifier’s
diversity, where ‘2nd’ denotes the original 2nd-Level feature,
‘2nd-h’, ‘2nd-m’ and ‘2nd-l’ denote the decomposed 3 subsets
of features and ‘1st-m’, ‘1st-s’, ‘3rd-c’ and ‘3rd-s’ denote the
mean intensity, standard deviation (1st-Level feature), clustering
coefficient and strength (3rd-Level feature), respectively. As can
be seen, the decomposed features can achieve a higher diversity
(a smaller value) than the original 2nd-Level feature for all the 3
tasks, especially for classification of pMCI. The higher diversity
benefited from the similarity-driven ranking method can ensure
the ensemble classifier has a good performance.

E. Ensemble Classification Evaluation

The increase of the number of classifiers and their diversi-
ties can improve the performance of the ensemble classifier in
theory. Obviously, the maximum number of classifiers (7 classi-
fiers) is fixed in this paper. If the sub-classifiers do not perform
well and all of them are used to do the final decision through
majority voting, there will be a high probability that misclas-
sified results accounted for the majority. In order to avoid this
situation and enhance the ensemble effect, a strategy of select-
ing models with high diversity is proposed. In this experiment,
we compare majority voting using outputs from all the 7 SVMs
(noted as 7-Majority Voting) with the proposed method which
using 3 selected SVMs’ decisions (noted as 3-Majority Voting),
and the results are shown in Fig. 6. It can be seen that the pro-
posed method outperforms the 7-Majority Voting, specifically,
it improves by 1.42% (ACC), 2.20% (SEN), 2.00% (SPE), and
0.03% (AUC) in AD diagnosis and 1.42% (ACC), 3.22% (SEN),
0.67% (SPE), −0.55% (AUC) in MCI diagnosis. For pMCI vs.
sMCI, the proposed method increases by 6.64% (ACC), 6.44%
(SEN), 4.71% (SPE), and 1.93% (AUC). Clearly, the proposed
method shows an effective improvement for classifying pMCI
from sMCI. It is because that a single type of feature in the
classification of pMCI does not perform well, and the highest
accuracy is only 59.85% (Table IV). The probability that mis-
classified results dominate the majority voting will be high, if
considering all the 7 classifiers’ outputs. And another reason
is that the improvement of performance in classifying pMCI
from sMCI benefits from the increase of diversity brought by
the decomposition of 2nd-Level feature.

F. Comparison With the State-of-the-Art Methods

We also compare the classification performance of the pro-
posed method with the state-of-the-art methods, including
Hinrichs’s method [14], Gray’s method [16], Li’s method [17],
Padilla’s method [31], which are designed on FDG-PET data

TABLE VIII
PERFORMANCE COMPARISON FOR AD VS. NC(%)

TABLE IX
PERFORMANCE COMPARISON FOR MCI VS. NC(%)

TABLE X
PERFORMANCE COMPARISON FOR PMCI VS. SMCI (%)

and use classical machine learning techniques. The results are
shown in Table VIII to Table X. It can be seen that our method
outperforms the other methods regarding MCI diagnosis and
classifying pMCI from sMCI. For AD vs. NC, the proposed
method is superior to the compared method in terms of ACC
and SEN. The difference with the best result in respect of SPE
is 2.22%, and for AUC, it is 1.02%. But our method is inferior
to Lu’s method [32], which uses deep neural network and re-
ports outstanding results in AD diagnosis and pMCI diagnosis,
93.85% (ACC) and 82.51% (ACC), respectively.

IV. CONCLUSION

AD and MCI diagnoses under FDG-PET single modality
are challenging. In this paper, a novel ensemble method which
uses multi-level features is proposed to address the problem.
First, 3 levels of features that represent properties of ROIs and
their connectivities are extracted gradually. Then a proposed
similarity-driven ranking method is applied to decompose the
2nd-Level feature to 3 different sets of features, which reduces
the feature dimension to a great extent and increases the clas-
sifier’s diversity. Next, different models are trained by using
different types of features. In order to enhance the ensemble
effect, a pair of models with high diversity are selected through
the proposed mMsE method and another model with high ac-
curacy is chosen by nested cross validation. The final decision
is made through the majority voting of the 3 selected mod-
els’ outputs. According to experiments on the public dataset
(ADNI), the proposed method can improve the performance of
AD and MCI diagnoses and especially classifying pMCI from
sMCI when compared with those state-of-the-art methods de-
veloped by using classical machine learning techniques, but our
approach does not outperform the deep learning based methods,
which will be included in our future work.
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